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Abstract. In this paper we study the behavior of the so called suc-
cessive inner and outer radii with respect to the Minkowski addition of
convex bodies, generalizing the well-known cases of the diameter, min-
imal width, circumradius and inradius. We get all possible upper and
lower bounds for the radii of the sum of two convex bodies in terms of
the sum of the corresponding radii.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn. Let 〈·, ·〉 and | · | be the standard inner
product and the Euclidean norm in Rn, respectively, and denote by ei the
i-th canonical unit vector. Let Bn be the n-dimensional unit ball.

The set of all i-dimensional linear subspaces of Rn is denoted by Ln
i . For

L ∈ Ln
i , L⊥ denotes its orthogonal complement and for the sake of brevity

we write Bi,L = Bn∩L. For K ∈ Kn and L ∈ Ln
i , the orthogonal projection

of K onto L is denoted by K|L. With lin{u1, . . . , um} we represent the
linear hull of the vectors u1, . . . , um and with [u1, u2] the line segment with
end-points u1, u2. Finally, for S ⊂ Rn we denote by conv S the convex hull
of S and by bdS its boundary. Moreover, we write relbdS to denote the
relative boundary of S, i.e., the boundary of S relative to its affine hull aff S.

The diameter and the minimal width of a convex body K (respectively,
the maximum and the minimum distance between two parallel support hy-
perplanes of K), the circumradius and the inradius of K (the radius of,
respectively, the smallest ball containing K and one of the greatest balls
contained in K) are denoted by D(K), ω(K), R(K) and r(K), respectively.
For more information on these functionals and their properties we refer to
[4, pp. 56–59]. If f is a functional on Kn depending on the dimension in
which a convex body K is embedded, and if K is contained in an affine space
A, then we write f(K; A) to stress that f has to be evaluated with respect
to the space A. The successive outer radii Ri and inner radii ri are defined
in the following way.
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Definition 1.1. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.

It is clear that the outer radii are increasing in i, whereas the inner radii
are decreasing in i. Observe that Ri(K) is the smallest radius of a solid
cylinder with i-dimensional spherical cross section containing K, whereas
ri(K) is the radius of the greatest i-dimensional ball contained in K, and
we obviously have

Rn(K) = R(K), R1(K) =
ω(K)

2
, rn(K) = r(K), r1(K) =

D(K)
2

.

The first systematic study of the successive radii was developed in [2].
For more information on these radii, their size for special bodies and their
relation with other measures, as well as computational aspects of the radii
we refer to [1, 2, 3, 5, 6, 7, 8, 9, 10, 11]. We mention, in particular, the
following inequalities: for i ∈ {1, . . . , n} and any convex body K,

(1) 1 ≤ Rn−i+1(K)
ri(K)

< i + 1.

For the lower bound, which is best possible, we refer to [2, Lemma 2.1].
To determine the optimal upper bound is still an open problem, even in the
0-symmetric case. The bound presented above is given in [14] (see also [13]).

Here, however, we are mainly interested in the relations of these radii to
the Minkowski sum (i.e., vectorial addition) of convex bodies. The behavior
of the diameter, minimal width, circumradius and inradius with respect to
the Minkowski sum is well known (see e.g. [15, p. 42]), namely,

D(K + K ′) ≤ D(K) + D(K ′), ω(K + K ′) ≥ ω(K) + ω(K ′),

R(K + K ′) ≤ R(K) + R(K ′), r(K + K ′) ≥ r(K) + r(K ′),
(2)

which can be translated as inequalities for r1, R1, Rn, and rn, respectively.
Hence the question arises to study the relation between Minkowski addition
and the remaining successive inner and outer radii. Regarding outer radii
we prove the following theorem.

Theorem 1.1. Let K, K ′ ∈ Kn. Then

R1(K + K ′) ≥ R1(K) + R1(K ′),
√

2Ri(K + K ′) ≥ Ri(K) + Ri(K ′), i = 2, . . . , n.
(3)

All inequalities are best possible.

Moreover, Rn(K + K ′) ≤ Rn(K) + Rn(K ′) (cf. (2)) and there exists no
constant c > 0 such that c Ri(K +K ′) ≤ Ri(K)+Ri(K ′) for i = 1, . . . , n−1
(see Remark 3.1).

In the case of the successive inner radii, the result is the following.
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Theorem 1.2. Let K, K ′ ∈ Kn. Then
√

2ri(K + K ′) ≥ ri(K) + ri(K ′), i = 1, . . . , n− 1,

rn(K + K ′) ≥ rn(K) + rn(K ′).
(4)

All inequalities are best possible.

Moreover, r1(K + K ′) ≤ r1(K) + r1(K ′) (cf. (2)) and there exists no
constant c > 0 such that c ri(K + K ′) ≤ ri(K) + ri(K ′) for i = 2, . . . , n (see
Remark 3.2).

The paper is organized as follows. In Section 2 we give preliminary lemmas
which are needed for the proof of Theorem 1.2. Then, in Section 3 we present
the proofs of the main theorems, as well as some consequences and remarks.
Finally, Section 4 is devoted to study particular cases for which the bounds
in Theorems 1.1 and 1.2 can be improved.

2. Some preliminary results

We state here some preliminary results in Linear Algebra which will be
needed in the proof of the main theorems.

Lemma 2.1. For 1 ≤ i ≤ n/2, let L,L′ ∈ Ln
i be such that L ∩ L′ = {0}.

Then there exist orthonormal bases {u1, . . . , ui} and {v1, . . . , vi} of L and L′
respectively, such that the 2-dimensional subspaces lin{u1, v1}, . . . , lin{ui, vi}
are pairwise orthogonal.

Proof. Throughout the proof we will always work with L + L′ as the main
vector space instead of Rn when considering subspaces, orthogonal comple-
ments, projections... Moreover we will identify L + L′ ≡ R2i for the sake of
brevity. We distinguish two cases.

Case (i): First we suppose that L ∩ L′⊥ = {0}. Then, denoting by π′ the
orthogonal projection onto L′, it clearly holds that π′(L) = L′. We assume,
without loss of generality, that L′ = lin{ei+1, . . . , e2i}, and let wj ∈ L be
such that π′(wj) = ei+j , j = 1, . . . , i. Let W = (w1 · · ·wi) ∈ R2i×i be the
(2i× i)-matrix with column vectors wj , which takes the form

W =
(

M
Ii

)
, M ∈ Ri×i.

Here Ii denotes the (i × i)-identity matrix. Then the singular value de-
composition of a real matrix (see e.g. [12, p. 80]) ensures the existence of
orthogonal matrices U, V ∈ Ri×i and a diagonal matrix D = diag{d1, . . . , di}
such that UᵀMV = D. We write U = (u′1 · · ·u′i) and V = (v′1 · · · v′i), with
u′j = (u′j1, . . . , u

′
ji)

ᵀ and v′j = (v′j1, . . . , v
′
ji)

ᵀ. Notice that, on the one hand,
WV =

(∑i
k=1 v′1kwk · · ·

∑i
k=1 v′ikwk

)
, i.e., the column vectors of WV are

linear combinations of {w1, . . . , wi}. So they lie in L. On the other hand,

WV =
(

M
Ii

)
V =

(
MV
V

)
=

(
UD
V

)
=

(
d1u

′
1 · · · diu

′
i

v′1 · · · v′i

)
.
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Therefore, the column vectors (dju
′
j , v

′
j)

ᵀ ∈ L for all j = 1, . . . , i. Notice
that dj 6= 0, j = 1, . . . , i, otherwise we would get (0, v′j)

ᵀ ∈ L ∩ L′ = {0}, a
contradiction. Moreover,

{
(dju

′
j , v

′
j)

ᵀ : j = 1, . . . , i
}

are non-zero pairwise
orthogonal vectors, since

〈
(dju

′
j , v

′
j)

ᵀ, (dku
′
k, v

′
k)

ᵀ〉 =
〈
dju

′
j , dku

′
k

〉
+

〈
v′j , v

′
k

〉
= 0

for all j 6= k, j, k ∈ {1, . . . , i}, because U, V are orthogonal matrices. Then,
we define the vectors

uj =
1∣∣(dju′j , v

′
j)ᵀ∣∣(dju

′
j , v

′
j)

ᵀ ∈ L, vj =
1∣∣(0, v′j)ᵀ∣∣(0, v

′
j)

ᵀ ∈ L′,

for j = 1, . . . , i. By construction, {u1, . . . , ui} and {v1, . . . , vi} are orthonor-
mal bases of L and L′ respectively. Moreover, for auj +bvj ∈ lin{uj , vj} and
cuk + dvk ∈ lin{uk, vk} with j 6= k, j, k ∈ {1, . . . , i}, we get

〈auj + bvj , cuk + dvk〉 = ad 〈uj , vk〉+ bc 〈vj , uk〉 = 0,

i.e., the 2-dimensional linear subspaces lin{u1, v1}, . . . , lin{ui, vi} are pair-
wise orthogonal, as required.

Case (ii): Now we assume L ∩ L′⊥ 6= {0}. Since L⊥ ∩ L′ = (L + L′⊥)⊥,
we have

dim(L⊥ ∩ L′) = dim(L + L′⊥)⊥ = 2i− dimL− dimL′⊥ + dim(L ∩ L′⊥)

= dim(L ∩ L′⊥).

So, let m = dim(L⊥ ∩ L′) = dim(L ∩ L′⊥), 0 < m ≤ i, and let {u1, . . . , um}
and {v1, . . . , vm} be orthonormal bases of L∩L′⊥ and L⊥ ∩L′, respectively.
We define L̄ = (L ∩ L′⊥) + (L⊥ ∩ L′). Then

L̄⊥ ∩ L =
[
(L⊥ + L′) ∩ (L + L′⊥)

] ∩ L = (L⊥ + L′) ∩ L

and hence
dim(L̄⊥ ∩ L) = dim

(
(L⊥ + L′) ∩ L

)

=
[
dimL⊥+ dimL′− dim(L⊥∩ L′)

]
+dimL− dim(L⊥+L′+L)

= i + i−m + i− 2i = i−m.

Analogously we get dim(L̄⊥ ∩ L′) = i − m. Moreover it is clear that the
intersection (L̄⊥ ∩ L) ∩ (L̄⊥ ∩ L′)⊥ = {0}, and thus we can apply the pre-
vious case (i) to the subspaces L̄⊥ ∩ L, L̄⊥ ∩ L′ ⊂ L̄⊥ to get orthonormal
bases {um+1, . . . , ui} and {vm+1, . . . , vi} of L̄⊥∩L and L̄⊥∩L′ respectively,
such that the 2-dimensional subspaces lin{um+1, vm+1}, . . . , lin{ui, vi} are
pairwise orthogonal. Embedding these vectors in the canonical way in R2i

we get orthonormal bases of L and L′ verifying the required property. ¤
Lemma 2.2. Let L,L′ ∈ Ln

i . There exist orthonormal bases {u1, . . . , ui}
and {v1, . . . , vi} of L and L′ respectively, such that 〈uj , vj〉 ≥ 0 for all
j = 1, . . . , i and such that the vectors {u1 + v1, . . . , ui + vi} are pairwise
orthogonal.
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Proof. Let k = dimL ∩ L′ ≤ i and let w1, . . . , wk be an orthonormal basis
of L ∩ L′. Then we define uj = wj ∈ L and vj = wj ∈ L′, for all 1 ≤ j ≤ k.
The vectors {u1 + v1, . . . , uk + vk} are trivially pairwise orthogonal since
uj + vj = 2wj , and moreover, 〈uj , vj〉 = 1, j = 1, . . . , k. So, they verify the
required properties, and we have to complete them to bases of L and L′.

Let L̄ = L ∩ L′ and consider L ∩ L̄⊥ and L′ ∩ L̄⊥. Notice that

dimL ∩ L̄⊥ = dimL + dim L̄⊥ − dim(L + L̄⊥) = i + (n− k)− n = i− k,

since L + L̄⊥ = Rn. Analogously dimL′ ∩ L̄⊥ = i− k. Moreover,
(
L ∩ L̄⊥

) ∩ (
L′ ∩ L̄⊥

)
= L ∩ L′ ∩ L̄⊥ = L̄ ∩ L̄⊥ = {0},

and thus we can apply Lemma 2.1 to the subspaces L∩ L̄⊥, L′ ∩ L̄⊥ ∈ Ln
i−k

to get the existence of orthonormal bases

{uk+1, . . . , ui} ⊂ L ∩ L̄⊥ and {vk+1, . . . , vi} ⊂ L′ ∩ L̄⊥

such that the subspaces lin{uk+1, vk+1}, . . . , lin{ui, vi} are pairwise orthog-
onal. Notice that the vectors vj can be chosen such that 〈uj , vj〉 ≥ 0 for
all j = k + 1, . . . , i, otherwise we just have to replace vj by −vj . Since
uj , vj ∈ L̄⊥ for all j = k + 1, . . . , i, together with the previously selected
vectors, we obtain orthonormal bases {u1, . . . , ui} and {v1, . . . , vi} of L and
L′ respectively, verifying also that 〈uj , vj〉 ≥ 0 for all j = 1, . . . , i. More-
over, since uj + vj ∈ lin{uj , vj} for j = k + 1, . . . , i and these 2-dimensional
subspaces are pairwise orthogonal, we also get the required orthogonality
property for the vectors uj + vj , j = 1, . . . , i. ¤

3. Proofs of the main results

We start by proving bounds for the outer radii Ri(K+K ′) of the Minkowski
sum of convex bodies in terms of the sum of the radii.

Proof of Theorem 1.1. The lower bound for R1(K + K ′) (minimal width) is
well-known (cf. (2)), and equality holds for instance when K = K ′ = Bn.
So we prove (3) for i = 2, . . . , n.

Let L ∈ Ln
i . Without loss of generality we may assume that R(K|L)Bi,L

and R(K ′|L)Bi,L are the circumballs of K|L and K ′|L respectively. Then it
is well-known (see [4, p. 59]) that there exist contact points

{u1, . . . , uk} ⊆ relbd(K|L) ∩ relbd
(
R(K|L)Bi,L

)
,

{v1, . . . , vl} ⊆ relbd(K ′|L) ∩ relbd
(
R(K ′|L)Bi,L

)
,

with 2 ≤ k, l ≤ i + 1, such that 0 ∈ conv{u1, . . . , uk} ∩ conv{v1, . . . , vl}.
Now we assume that there exist t ∈ L and ρ <

(
R(K|L)2 + R(K ′|L)2

)1/2

such that (K + K ′)|L ⊆ t + ρBi,L, and we will get a contradiction.
Notice first that since 0 ∈ conv{u1, . . . , uk}, there exists a point, say u1,

such that 〈u1, t〉 ≤ 0: indeed, if for all i = 1, . . . , k it holds 〈ui, t〉 > 0, then
conv{u1, . . . , uk} and the origin 0 can be strictly separated by a hyperplane
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with (outer) normal vector t (see [15, p. 12]), which contradicts the fact that
0 ∈ conv{u1, . . . , uk}. Then we get

|u1 − t|2 = R(K|L)2 − 2 〈u1, t〉+ |t|2 ≥ R(K|L)2.

Next we take the vector u1−t. Notice that u1−t 6= 0 because 〈u1, t〉 ≤ 0 and
u1 6= 0. Since 0 ∈ conv{v1, . . . , vl}, an analogous argument to the previous
one shows that there exists a point, say v1, such that 〈v1, u1 − t〉 ≥ 0. Finally
we consider the point

u1 + v1 ∈ K|L + K ′|L = (K + K ′)|L ⊆ t + ρBi,L,

for which, using the above conditions, we get

|u1 + v1 − t|2 = |u1 − t|2 +2 〈u1 − t, v1〉+ |v1|2 ≥ R(K|L)2 +R(K ′|L)2 > ρ2,

a contradiction. Therefore ρ ≥ (
R(K|L)2 +R(K ′|L)2

)1/2 and, in particular,
the same holds for the circumradius of (K + K ′)|L. Hence we finally get

R
(
(K + K ′)|L) ≥ (

R(K|L)2 + R(K ′|L)2
)1/2 ≥

√
2

2
(
R(K|L) + R(K ′|L)

)

for all L ∈ Ln
i . Now let Li ∈ Ln

i be such that Ri(K +K ′) = R
(
(K +K ′)|Li

)
.

Then we can conclude that

Ri(K + K ′) = R
(
(K + K ′)|Li

) ≥ 1√
2

(
R(K|Li) + R(K ′|Li)

)

≥ 1√
2

(
Ri(K) + Ri(K ′)

)
,

which proves (3) for i = 2, . . . , n.
It remains to be shown that these inequalities are best possible. We fix

i ∈ {2, . . . , n} and consider the convex bodies

K = [−e1, e1] +
n∑

k=i+1

[−ek, ek], K ′ = [−e2, e2] +
n∑

k=i+1

[−ek, ek].

Here for i = n we are just taking K = [−e1, e1], K ′ = [−e2, e2]. Since K
and K ′ are both (n − i + 1)-cubes with edges parallel to the coordinate
axes and length 2, it is clear that R(K|L), R(K ′|L) ≥ 1 for all L ∈ Ln

i .
Moreover, if L = lin{e1, . . . , ei} then R(K|L) = R(K ′|L) = 1. This shows
that Ri(K) = Ri(K ′) = 1. Now we take the sum

K + K ′ = [−e1, e1] + [−e2, e2] + 2
n∑

k=i+1

[−ek, ek],

an (n − i + 2)-dimensional parallelepiped with edges again parallel to the
coordinate axes and lengths 2 and 4. Then it is easy to see that

Ri(K + K ′) = R
(
(K + K ′)| lin{e1, . . . , ei}

)
=
√

2 =
1√
2

(
Ri(K) + Ri(K ′)

)
,

which concludes the proof of the theorem. ¤



SUCCESSIVE RADII AND MINKOWSKI ADDITION 7

We already know that there exists also an upper bound for Rn(K +K ′) in
terms of the sum of the circumradii, namely, Rn(K+K ′) ≤ Rn(K)+Rn(K ′)
(cf. (2)). To see that it is best possible, take K = K ′ = Bn. However:

Remark 3.1. For any i ∈ {1, . . . , n− 1} fixed, define the convex bodies

K = [−en−i+1, en−i+1] and K ′ =
n−i∑

k=1

[−ek, ek].

Notice that K| lin{en−i, en−i+2, . . . , en} = K ′| lin{en−i+1, . . . , en} = {0}, and
hence both Ri(K) = Ri(K ′) = 0, i.e., Ri(K) + Ri(K ′) = 0. However,
K +K ′ =

∑n−i+1
k=1 [−ek, ek] is an (n− i+1)-dimensional convex body, which

implies that the dimension dim
(
(K + K ′)|L) ≥ 1 for all L ∈ Ln

i , and thus
R(K + K ′) > 0. Hence we conclude that there exists no constant c > 0 such
that c Ri(K + K ′) ≤ Ri(K) + Ri(K ′) for any i = 1, . . . , n− 1.

Now we get the corresponding bounds for the inner radii ri(K + K ′) by
proving Theorem 1.2.

Proof of Theorem 1.2. The lower bound for rn(K + K ′) (inradius) is well-
known (cf. (2)), and equality holds for instance when K = K ′ = Bn. So we
prove (4) for i = 1, . . . , n− 1.

Without loss of generality we may assume that ri(K) = r(K ∩ L; L) and
ri(K ′) = r(K ′ ∩ L′;L′) for L,L′ ∈ Ln

i , i.e., that the greatest i-dimensional
balls contained in K and K ′ are r(K ∩ L; L)Bi,L and r(K ′ ∩ L′; L′)Bi,L′ ,
respectively. For the sake of brevity we write r = r(K ∩ L;L) = ri(K) and
r′ = r(K ′ ∩ L′; L′) = ri(K ′). Thus it suffices to show that inequality (4)
holds for i-dimensional balls, i.e., that

(5)
√

2ri(rBi,L + r′Bi,L′) ≥ r + r′,

since, taking into account that rBi,L + r′Bi,L′ ⊆ K + K ′, we have
√

2ri(K + K ′) ≥
√

2ri(rBi,L + r′Bi,L′) ≥ r + r′ = ri(K) + ri(K ′).

So we have to prove (5). By Lemma 2.2 we can assure the existence of two
subsets of pairwise orthogonal vectors

{u1, . . . , ui} ∈ bd(rBi,L) and {v1, . . . , vi} ∈ bd(r′Bi,L′),

such that {u1+v1, . . . , ui+vi} are also pairwise orthogonal with 〈uj , vj〉 ≥ 0,
j = 1, . . . , i. Let L̄ = lin{u1 + v1, . . . , ui + vi} ∈ Ln

i . Next we show that the
i-dimensional ball

(6)
[
r2 + (r′)2

]1/2
Bi,L̄ ⊂ rBi,L + r′Bi,L′ .

Notice first that

|uj + vj |2 = |uj |2 + |vj |2 + 2 〈uj , vj〉 ≥ r2 + (r′)2.

Then, denoting by E =
{∑i

j=1 λj(uj + vj) : λj ∈ [−1, 1],
∑i

j=1 λ2
j ≤ 1

}
the

0-symmetric ellipsoid with semi-axes {uj +vj , j = 1, . . . , i}, it trivially holds
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that
[
r2 + (r′)2

]1/2
Bi,L̄ ⊆ E . Thus, in order to show (6) it suffices to prove

the inclusion E ⊂ rBi,L +r′Bi,L′ , i.e., that
∑i

j=1 λj(uj + vj) ∈ rBi,L +r′Bi,L′

for
∑i

j=1 λ2
j = 1. Clearly,

∑i
j=1 λjuj ∈ L, and moreover, since {u1, . . . , ui}

are pairwise orthogonal vectors with |uj | = r, we have
∣∣∣∣

i∑

j=1

λjuj

∣∣∣∣
2

=
i∑

j=1

λ2
j |uj |2 = r2

i∑

j=1

λ2
j = r2.

Therefore,
∑i

j=1 λjuj ∈ rBi,L. Analogously we get
∑i

j=1 λjvj ∈ r′Bi,L′ and
thus

∑i
j=1 λj(uj + vj) =

∑i
j=1 λjuj +

∑i
j=1 λjvj ∈ rBi,L + r′Bi,L′ . This

shows (6) and we can conclude that

ri(rBi,L + r′Bi,L′) ≥ ri

([
r2 + (r′)2

]1/2
Bi,L̄

)
=

[
r2 + (r′)2

]1/2 ≥ 1√
2
(r + r′),

which gives the required inequality (5).
It remains to be shown that these inequalities are best possible. We fix

i ∈ {1, . . . , n − 1}. Let j = 2i − n if 2i ≥ n, and j = 0 otherwise, and
consider the i-dimensional linear subspaces

L = lin{e1, . . . , ej , ej+1, . . . , ei}, L′ = lin{e1, . . . , ej , ei+1, . . . , e2i−j}.
We are going to show that equality in (4) is attained for the i-dimensional
unit balls Bi,L and Bi,L′ . Notice that if we prove the inequality

(7) ri(Bi,L + Bi,L′) ≤
√

2

then by (4) we can conclude that
√

2 ≥ ri(Bi,L + Bi,L′) ≥ 1√
2

[
ri(Bi,L) + ri(Bi,L′)

]
=

1√
2

(1 + 1) =
√

2,

which gives the required result. Observe first that since Bi,L + Bi,L′ is a
0-symmetric convex body, for any L̄ ∈ Ln

i we have

max
x∈L̄⊥

r
(
(Bi,L + Bi,L′) ∩ (x + L̄);x + L̄

)
= r

(
(Bi,L + Bi,L′) ∩ L̄; L̄

)
.

Therefore in order to show (7) it suffices to prove that

(8) r
(
(Bi,L + Bi,L′) ∩ L̄; L̄

) ≤
√

2 for all L̄ ∈ Ln
i .

If dim
(
(Bi,L + Bi,L′) ∩ L̄

)
< i for L̄ ∈ Ln

i then r
(
(Bi,L + Bi,L′) ∩ L̄; L̄

)
= 0.

So we take L̄ ∈ Ln
i with dim

(
(Bi,L + Bi,L′) ∩ L̄

)
= i. Notice that if we find

x ∈ relbd
(
(Bi,L + Bi,L′) ∩ L̄

)
with |x| ≤ √

2, then we immediately get (8).
In order to find such an x, let L′′ = lin{ej+1, . . . , en}. If j = 2i − n (i.e., if
2i ≥ n) then

dim(L̄ ∩ L′′) = dim L̄ + dimL′′ − dim(L̄ + L′′) = i + n− j − dim(L̄ + L′′)
≥ i + n− j − n = i− j = i− 2i + n = n− i ≥ 1,

and moreover, L + L′ = Rn, i.e., dim(Bi,L + Bi,L′) = n. On the other hand,
if j = 0 then L′′ = Rn, and so L̄ ∩ L′′ = L̄. Therefore, in both cases,



SUCCESSIVE RADII AND MINKOWSKI ADDITION 9

dim
(
(Bi,L +Bi,L′)∩ L̄∩L′′

) ≥ 1, which ensures the existence of a boundary
point x ∈ relbd(Bi,L +Bi,L′)∩ L̄∩L′′. Since any x ∈ relbd(Bi,L +Bi,L′)∩L′′
is expressed in the form

x =
i∑

k=j+1

λkek +
2i−j∑

k=i+1

µkek, with
i∑

k=j+1

λ2
k = 1,

2i−j∑

k=i+1

µ2
k = 1,

we trivially get

|x|2 =
i∑

k=j+1

λ2
k +

2i−j∑

k=i+1

µ2
k = 2.

This shows (8) and concludes the proof. ¤

We already know that there exists also an upper bound for r1(K +K ′) in
terms of the sum of the diameters, namely, r1(K +K ′) ≤ r1(K)+r1(K ′) (cf.
(2)). It is best possible, as shown by just taking K = K ′ = Bn. However:

Remark 3.2. For any i ∈ {2, . . . , n} fixed, define the convex bodies

K = [−e1, e1] and K ′ =
i∑

k=2

[−ek, ek].

Since K and K ′ are, respectively, 1-dimensional and (i − 1)-dimensional
convex bodies, ri(K) = ri(K ′) = 0. However, K + K ′ =

∑i
k=1[−ek, ek] and

clearly ri(K +K ′) = 1. Hence we can conclude that there exists no constant
c > 0 such that c ri(K + K ′) ≤ ri(K) + ri(K ′) for any i = 2, . . . , n.

The bounds obtained in Theorems 1.1 and 1.2 can be improved when
special sums of convex bodies are considered. Moreover, reverse inequalities
to (3) and (4) exist for these special sets (cf. Remarks 3.1 and 3.2). We deal
with this question in the last section.

4. Special sums of convex bodies

Observe that equality in (3) and (4) is attained in both cases for convex
bodies with empty interior. Also the non-existence of the reverse inequalities
is due to this particular type of bodies (cf. Remarks 3.1 and 3.2). Thus the
question arises whether those inequalities can be improved if convex bodies
with non-empty interior are considered. So we ask, in particular, for the
special case when one of the bodies involved is the Euclidean ball.

Proposition 4.1. Let K ∈ Kn and r ≥ 0. Then for all i = 1, . . . , n,

Ri(K + rBn) = Ri(K) + r and ri(K + rBn) ≥ ri(K) + r.

All inequalities are best possible and for i = 2, . . . , n− 1 they can be strict.

Proof. The identity for Ri is a straightforward computation:

Ri(K + rBn) = min
L∈Ln

i

R
(
(K + rBn)|L)

= min
L∈Ln

i

R(K|L+ rBn|L) = Ri(K)+ r.
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Now we show the lower bound for ri(K + rBn). First notice that for any
L ∈ Ln

i and x ∈ Rn, we have K ∩ (x + L) + rBi,L ⊆ (K + rBn) ∩ (x + L).
Indeed, if z ∈ K∩ (x+L)+rBi,L then z = x+ l+ru, where l ∈ L, x+ l ∈ K
and u ∈ Bi,L, and thus z = x + l + ru ∈ (K + rBn) ∩ (x + L).

Let Li ∈ Ln
i and x ∈ L⊥i be such that ri(K) = r

(
K ∩ (x + Li);x + Li

)
.

Then using the above property we get

ri(K + rBn) ≥ r
(
(K + rBn) ∩ (x + Li);x + Li

)

≥ r
(
K ∩ (x + Li) + rBi,Li ; x + Li

)

= r
(
K ∩ (x + Li);x + Li

)
+ r = ri(K) + r.

Equality holds, for instance, if K = Bn. Finally we show that, unlike the
Ri case, there exist convex bodies with ri(K + rBn) > ri(K) + r.

Let Pε = conv{±p1,±p2,±p3} be the non-regular triangular antiprism in
R3 with vertices p1 =

(
1/
√

3, 1, ε
)
, p2 =

(
1/
√

3,−1, ε
)
, p3 =

(−2/
√

3, 0, ε
)
,

ε > 0 (see Figure 1). First we prove that r2(Pε) =
√

3/2 for ε small enough.

p1p2

p3

−p1 −p2

−p3

m3

m1 m2

q3

q1 q2

−p2−p1

−p3

p2 p1

p3

q3

q1 q2

m1 m2

m3

Figure 1. Triangular antiprism with r2(Pε + rB3) > r2(Pε) + r.

Let q1 = (1/2)(p2 + p3), q2 = (1/2)(p1 + p3), q3 = (1/2)(p1 + p2) be the
middle points of the edges of the triangle contained in the plane z = ε, and
let mj = (1/2)(−pj + qj), j = 1, 2, 3 (see Figure 1). It is easy to check that
|mj | =

√
3/2 and |qj | =

√
1/3 + ε2, for all j = 1, 2, 3. Then |qj | ≤

√
3/2 if

and only if ε ≤
√

5/12 and hence, for any ε ≤
√

5/12, all segments

{[
(0, 0, ε), qj

]
, [qj ,mj ] : j = 1, 2, 3

}
⊂ bd Pε ∩

√
3

2
B3.

Now we can prove that r2(Pε) =
√

3/2 for ε ≤
√

5/12. Notice that since
Pε is 0-symmetric, r2(Pε) = maxL∈L3

2
r
(
Pε ∩ L; L

)
. If L = lin{e1, e2}, then

Pε∩lin{e1, e2} is the regular hexagon with apothem |mj |, and so with incircle
(
√

3/2)B2,lin{e1,e2} (see Figure 1). Therefore, r(Pε∩ lin{e1, e2}; lin{e1, e2}) =√
3/2. Now let L ∈ L3

2, L 6= lin{e1, e2}. Clearly L∩ lin{e1, e2} is a 1-dimen-
sional subspace which intersects the relative interior of, at least, one of the
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segments with end-points mj , j = 1, 2, 3, say [m1,m2]. Then there is a point

q ∈ L ∩ bd Pε ∩
{

[m1, q1],
[
q1, (0, 0, ε)

]
,
[
(0, 0, ε), q2

]
, [q2,m2]

}

with |q| ≤ √
3/2, which ensures that r(Pε ∩ L; L) ≤ √

3/2 for all L ∈ L3
2,

L 6= lin{e1, e2}. Thus we can conclude that r2(Pε) =
√

3/2 if ε ≤
√

5/12.
Finally, if we show that

(9) r2(Pε + rB3) ≥ 1 +
√

r2 − ε2 for r ≥ ε,

then we will conclude that

r2(Pε + rB3) ≥ 1 +
√

r2 − ε2 >

√
3

2
+ r = r2(Pε) + r

for ε ≤
√

5/12 and r >
(
2 +

√
3
)(

ε2 −√3 + 7/4
) ≥ ε, as required.

Observe that in order to prove (9) it suffices to show that

r
(
(Pε + rB3) ∩ lin{e1, e2}; lin{e1, e2}

) ≥ 1 +
√

r2 − ε2.

Denoting by ±p̄j = ±pj | lin{e1, e2}, it is a straightforward computation to
check that (±pj + rB3) ∩ lin{e1, e2} = ±p̄j +

√
r2 − ε2B2,lin{e1,e2}. Since

(±pj + rB3) ∩ lin{e1, e2} ⊂ (Pε + rB3) ∩ lin{e1, e2},

(Pε + rB3) ∩ lin{e1, e2} ⊃ conv
{
±p̄j +

√
r2 − ε2B2,lin{e1,e2} : j = 1, 2, 3

}

=
(
Pε| lin{e1, e2}

)
+

√
r2 − ε2B2,lin{e1,e2}.

Notice that the projected body H = Pε| lin{e1, e2} is the regular hexagon in
the plane lin{e1, e2} with vertices ±p̄j , j = 1, 2, 3, which has 2-dimensional
inradius r

(
H; lin{e1, e2}

)
= 1. Thus,

r
(
(Pε + rB3) ∩ lin{e1, e2}; lin{e1, e2}

)

≥ r
(
H +

√
r2 − ε2B2,lin{e1,e2}; lin{e1, e2}

)

= r
(
H; lin{e1, e2}

)
+

√
r2 − ε2 = 1 +

√
r2 − ε2,

which shows (9) and finishes the proof. ¤

Remark 4.1. There exist upper bounds for ri(K + rBn) in terms of ri(K)
and r. Namely, using (1) and Proposition 4.1, it is straightforward to get

ri(K + rBn) ≤ Rn−i+1(K + rBn) = Rn−i+1(K) + r < (i + 1)ri(K) + r,

although this bound is far from being optimal.

Remark 4.2. Let K,K ′ ∈ Kn. If K ′ has non-empty interior then we have
ri(K + K ′) ≥ ri

(
K + r(K ′)Bn

) ≥ ri(K) + r(K ′). Thus in order to improve
the constant

√
2 in (4) the inradius of the body has to be involved.
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Remark 4.3. Notice that the family of triangular antiprisms Pε considered
in the proof of Proposition 4.1 shows also that the functional ri : Kn −→ R≥0,
i = 2, . . . , n−1, is not continuous with respect to the Hausdorff metric: using
the previous notation and taking ε = 1/k, we have limk→∞ P1/k = H but

lim
k→∞

r2(P1/k) =
√

3
2

< 1 = r2(H).

However, it is easy to see that ri : {K ∈ Kn : dimK = n} −→ R≥0 is a
continuous map.

The central symmetral of K ∈ Kn is defined as K0 =
(
K + (−K)

)
/2 =

(K − K)/2 (see [4, p. 79]). We are interested in the behavior of the radii
regarding the special case of the Minkowski sum K−K. In [10, Lemma 2.1,
Remark 2.1] it was shown that Ri(K0) ≤ Ri(K) and ri(K0) ≥ ri(K) for
all i = 1, . . . , n. The next proposition completes this particular case, by
showing that the bounds in (3) and (4) can be improved and that there are
non-trivial reverse inequalities (cf. Remarks 3.1 and 3.2).

Proposition 4.2. Let K ∈ Kn. Then for all i = 1, . . . , n,

a)
√

2

√
i + 1

i
Ri(K) ≤ Ri(K −K) ≤ 2Ri(K),

b) 2ri(K) ≤ ri(K −K) < 2(i + 1)ri(K).
(10)

All inequalities except for the upper bound in (b) are best possible.

Proof. The right hand side in (10.a) and the left hand side in (10.b) are
known (see [10, Lemma 2.1, Remark 2.1]). In order to prove the left in-
equality in (10.a) let Li ∈ Ln

i be such that Ri(K − K) = R
(
(K − K)|Li

)
for any fixed i ∈ {1, . . . , n}. It is clear that K0|Li = (K|Li)0. Then, since
central symmetry preserves the diameter (see e.g. [4, p. 79]) and using the
well-known Jung inequality (see e.g. [4, p. 84]) in dimension i, we get

Ri(K −K) = R
(
(K −K)|Li

)
= 2R

(
K0|Li

)
= 2R

(
(K|Li)0

)
= D

(
(K|Li)0

)

= D(K|Li) ≥
√

2(i + 1)
i

R(K|Li) ≥
√

2(i + 1)
i

Ri(K).

Equality in the Jung inequality holds for the i-dimensional regular simplex
Si as well as for every convex body of diameter D containing the regular
simplex of edge-length D. Hence, in our case, equality holds for any convex
body K such that Ri(K) = R(K|Li) and such that K|Li is an extremal
set in Jung’s inequality. For instance, equality holds for K = Si + MCn−i,
where Cn−i ⊂ (aff Si)⊥ represents the (n − i)-dimensional unit cube and
M > 0 is sufficiently large.

The right hand side in (10.b) is a direct consequence of (1) and the already
mentioned property of the central symmetrization, Ri(K0) ≤ Ri(K):

ri(K −K) = 2ri(K0) ≤ 2Rn−i+1(K0) ≤ 2Rn−i+1(K) < 2(i + 1)ri(K). ¤
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Departamento de Matemáticas, Universidad de Murcia, Campus de Espinar-
do, 30100-Murcia, Spain

E-mail address: bgmerino@um.es

E-mail address: mhcifre@um.es


